Resolution of Alcohols as Esters by HPLC on (+)-Poly(triphenylmethyl methacrylate)¹⁾

Yoshio Okamoto,* Shiro Honda, Koichi Hatada, and Heimei Yuki† Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560 (Received May 2, 1985)

Synopsis. Various secondary alcohols were resolved as benzoates or 3,5-dichlorobenzoates by high-performance liquid chromatography on optically active (+)-poly-(triphenylmethyl methacrylate). Almost completely resolved alcohols include 2-butanol, 2-pentanol, 2-octanol, 3-octanol, 1-phenylethanol, *cis*-2-methylcyclohexanol, *trans*-and *cis*-3-methyl-cyclohexanol, and tetrahydrofurfuryl alcohol.

A unique optically active polymer bearing a stable helical conformation, poly(triphenylmethyl methacrylate) (PTrMA),²⁾ has been widely used as a chiral stationary phase for high-performance liquid chromatography (HPLC) to resolve various racemic compounds.³⁾ The PTrMA usually resolves nonpolar compounds rather than polar ones under reversed-phase chromatographic conditions with a polar eluent like methanol. Thus, a direct resolution of alcohols was not effected but it was attained as esters and even 2-butanol was completely resolved in a form of 3,5-dichlorobenzoate. Usually, the resolution of simple aliphatic alcohols is not easy and is a time-consuming process.

Experimental

All esters used in this work were synthesized from racemic alcohols and acid chlorides. The preparations of (+)-PTrMA⁴⁾ and the packing material^{3c,5)} for HPLC were reported previously. The material was packed in a stainless steel column (25×0.46 (id)cm) by a slurry method. The resolution was accomplished with a JASCO TRIROTOR II chromatograph equipped with a JASCO UVIDEC-100-III UV detector at 15°C, methanol being used as the eluent.

Results and Discussion

Figure 1 demonstrates the chromatograms of the resolution of s-butyl 3,5-dichlorobenzoate and 1-ethylhexyl benzoate on a (+)-PTrMA column. Both compounds were completely resolved. The resolution results are summarized in Table 1. In the resolution of 2-butanol and 2-pentanol, 3,5-dichlorobenzoates were better resolved than benzoates (Entries 1-4). Separation factor (α) increased in the order of 2octanol>2-pentanol>2-butanol (Entries 6, 3, and 1). However, 3-methyl-2-butanol was not resolved even as 3,5-dichlorobenzoate (Entry 5). 3-Octanol was resolved more efficiently than 2-octanol (Entries 6 and 7). Simple primary alcohols were difficult to resolve (Entries 9 and 10), although Yoshii and coworkers have reported that a racemic primary alcohol having a more bulky group is completely resolved as benzoate on a (+)-PTrMA column.3h)

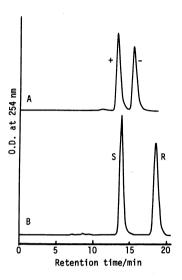


Fig. 1. Chromatograms of the resolution of s-butyl 3,5-dichlorobenzoate (A) and 1-ethylhexyl benzoate (B) on a (+)-PTrMA column. (Column: 25 cm× 0.46 (id) cm, eluent: methanol (0.5 ml/min), 15 °C).

In the resolution of 1-phenylethanol, the benzoate was the most suitable ester (Entry 11). Other esters showed rather broad peaks, which resulted in low resolution factors (R_s) as seen in Entries 12—15. Several cyclic aliphatic alcohols were well resolved as benzoates (Entries 16—21). *cis*- and *trans*-3-Methyl-cyclohexyl benzoates showed rather different capacity factors (k_1 '), indicating that the separation of cis- and trans-isomers is possible as well as their resolution.

We have already reported that the resolution of dibenzoates of 2,4-pentanediol, trans-1,2- and trans-1,3cyclohexanediol is also possible on (+)-PTrMA.3b,c) These data indicate that the (+)-PTrMA column is useful for the resolution of various alcohols in the form of benzoate derivatives. Oi and Kitahara⁶⁾ reported the resolution of various alcohols as 3,5-dinitrophenylurethane derivatives on chiral columns consisting of chiral 1-(1-naphthyl)ethylamine and 2-(4chlorophenyl)isovaleric acid; a hexane-1,2-dichloroethane mixture containing a small amount of ethanol was used as the eluent. A similar resolution has also been reported by Pirkle and Hyun.7) The chiral recognition mechanism of our system seems different from such work in which a polar interaction plays an important role in chiral recognition. In our system, a nonpolar interaction or a π - π interaction is likely to be more important than the polar interaction.

This work was partly supported by the Grant-in-Aid for Developmental Scientific Research (58850188).

[†]Present address: Tezukayama-Gakuin Women's Junior College, Tezukayama, Sumiyoshi-ku, Osaka 558.

			· ·
TABLE	D ECOLUTION OF FETERS	(R ₁ R ₂ CH-OCOR ₃) ON A	(+) PTrMA corrumna)
I ADLE I.	RESOLUTION OF ESTERS	TRINSCITTOR AND ON A	I I I I I I I I I I I I I I I I I I I

Entry	Ester			k ₁ ′ ^{c)}	$\alpha^{ m d)}$	R _s ^{e)}
	R_1	R_2	R ₃ ^{b)}	к1	α	K _s
1	C_2H_5	CH ₃	Ph	0.86(R)	~l	0
2	C_2H_5	CH_3	$3,5-Cl_2C_6H_3$	1.17(+)	1.36	1.47
3	n-C ₃ H ₇	CH_3	Ph	0.94(R)	1.18	1.32
4	n-C ₃ H ₇	CH_3	3,5-Cl ₂ C ₆ H ₃	1.12(+)	1.40	1.56
5	i-C ₃ H ₇	CH_3	3,5-Cl ₂ C ₆ H ₃	1.35	1	0
6	n-C ₆ H ₁₃	CH_3	Ph	0.89(S)	1.23	1.56
7	n-C ₅ H ₁₁	C_2H_5	Ph	1.32(S)	1.60	4.44
8	$CH_2=CH$	CH_3	$3,5-\text{Cl}_2\text{C}_6\text{H}_3$	1.13	1.03	>0
9	$C_2H_5(CH_3)CH$	H	3,5-Cl ₂ C ₆ H ₃	1.40	1	0
10	n-C ₃ H ₇ (CH ₃)CH	H	3,5-Cl ₂ C ₆ H ₃	1.49	1	0
11	Ph	CH_3	Ph	2.16(R)	2.42	6.19
12	Ph	CH_3	$4-NO_2C_6H_4$	1.04	1.22	0.81
13	Ph	CH_3	$3,5-(NO_2)_2C_6H_3$	0.67	1.18	0.65
14	Ph	CH_3	3,5-Cl ₂ C ₆ H ₃	1.74	1.42	>0
15	Ph	CH_3	2-Naphthyl	2.39	1.55	1.28
16	Methyl		Ph	2.50	1.15	0.91
17	cis-2-Methylcyclohexy	·l	Ph	1.34	1.34	1.90
18	cis-3-Methylcyclohexy	1	Ph	1.43	1.26	1.27
19	trans-3-Methylcyclohexyl		Ph	2.70	1.19	0.91
20	trans-2-Cyclohexylcyclohexyl		Ph	8.02	1.22	1.16
21	Tetrahydrofurfuryl		Ph	1.37	1.11	1.04

a) Chromatographic conditions are given in Fig. 1. b) 3,5-Cl₂C₆H₃=3,5-dichlorophenyl, 3,5-(NO₂)₂C₆H₃=3,5-dinitrophenyl. c) k_1' (capacity factor to the first-eluted enantiomer)=(retention time of the first-eluted enantiomer-dead time)/dead time. The sign in parenthesis is that of optical rotation at 365 nm or absoluted configuration. d) α (separation factor)=(capacity factor of the second-eluted enantiomer)/ k_1' . e) Resolution factor=2×(difference of retention time of the second-and first-eluted enantiomers)/(sum of the band widths of the two enantiomer peaks).

References

- 1) Chromatographic Resolution 8. Part 7: Y. Okamoto, M. Kawashima, and K. Hatada, J. Am. Chem. Soc., 106, 5357 (1984).
- 2) a) Y. Okamoto, K. Suzuki, K. Ohta, K. Hatada, and H. Yuki, J. Am. Chem. Soc., 101, 4769 (1979); b) Y. Okamoto, K. Suzuki, and H. Yuki, J. Polym. Sci. Polym. Chem. Ed., 18, 3043 (1980).
- 3) a) H. Yuki, Y. Okamoto, and I. Okamoto, J. Am. Chem. Soc., 102, 6356 (1980); b) Y. Okamoto, I. Okamoto, and H. Yuki, Chem. Lett., 1981, 835; c) Y. Okamoto, S. Honda, I. Okamoto, H. Yuki, S. Murata, R. Noyori, and H. Takaya, J. Am. Chem. Soc., 103, 6971 (1981); d) M. Nakazaki, K. Yamamoto, and M. Maeda, J. Org. Chem., 46, 1985 (1981); e) R. Noyori, N. Sano, S. Murata, Y. Okamoto, H. Yuki, and I. Ito, Tetrahedron Lett., 23, 2669 (1982); f) Y. Kawada, H. Iwamura, Y. Okamoto, and H. Yuki, ibid., 24, 791 (1983); g) Y. Okamoto, S. Honda, E. Yashima, and H. Yuki, Chem. Lett., 1983, 1221; h) Y. Takeuchi, M. Furumura, and E. Yoshii, Chem. Pharm. Bull., 31, 3967 (1983); i) Y. Toya, S. Nakatsuka, and T. Goto, Tetrahedron Lett., 24, 5753 (1983); j) A. Tajiri, M. Fukuda, M. Hatano, T. Morita, and K. Takase,

Angew. Chem. Int. Ed. Engl., 22, 870 (1983); k) Y. Okamoto, E. Yashima, K. Hatada, and K. Mislow, J. Org. Chem., 49, 557 (1984); 1) Y. Okamoto, S. Honda, K. Hatada, I. Okamoto, Y. Toga, and S. Kobayashi, Bull. Chem. Soc. Jpn., 59, 1681 (1948); m) Y. Okamoto, S. Honda, H. Yuki, H. Nakamura, Y. Iitaka, and T. Nozoe, Chem. Lett., 1984, 1149; n) Y. Okamoto, E. Yashima, and K. Hatada, J. Chem. Soc., Chem. Commun., 1984, 1051; o) K. Yamamoto, H. Fukushima, Y. Okamoto, K. Hatada, and M. Nakazaki, J. Chem. Soc. Chem. Commun., 1984, 1111; p) K. Yamamoto, H. Fukushima, and M. Nakazaki, ibid., 1984, 1490; q) P. Salvadori, C. Rosini, and C. Bertucci, J. Org. Chem., 49, 5050 (1984); r) K. Yamamoto, T. Ueda, H. Yumioka, Y. Okamoto, and T. Yoshida, Chem. Lett., 1984, 1977; s) K. Meurer, A. Aigner, and F. Vögtle, J. Inclusion Phen., 3, 51 (1985); t) W. Kissener and F. Vögtle, Angew. Chem. Int. Ed. Engl., 97, (1985) 22, 222 (1985)

- 4) Y. Okamoto, H. Shohi, and H. Yuki, J. Polym. Sci. Polym. Lett. Ed., 21, 601 (1983).
- 5) This type of a chiral column (Chiralpak-OT) is available from Daicel Chem. Ind. Ltd., Shinzaike, Himeji, Japan.
- 6) N. Oi and H. Kitahara, *J. Chromatogr.*, **265**, 117 (1983).
 7) W. H. Pirkle and M. H. Hyun, *J. Org. Chem*, **49**, 3043 (1984).